Bermad Pressure-Reducing Pilot-Operated Pressure-Control Valve Model: 42T Installation Operation Maintenance Manual (IOM) ## **Safety First** BERMAD believes that the safety of personnel working with and around our equipment is the most important consideration. Please read all safety information below and any other relevant source before attempting to perform any maintenance function. Comply with all approved and established precautions for working with your type of equipment and/or environment. Authorized personnel should perform all maintenance tasks. Prior to performing a procedure, read it through to the end and understand it. If anything is not clear, ask the appropriate authority. When performing a procedure, follow the steps in succession without omission. ## 1. General Bermad 42T Pressure-Reducing Valve is a pilot-operated, diaphragm-actuated, straight-through flow type with low pressure-loss. It is an automatic pressure control valve that reduces higher inlet pressure to lower constant outlet pressure regardless of fluctuating flow-rates and/or varying inlet pressure. ## 2. Pressure and Flow Ratings The Bermad 42T pressure-reducing control valves are rated for the following pressure and flow capacities detailed in table 1. **Table 1: Pressure and Flow Ratings** | Valve Size in. | 1.5" | 2-2.5" | 3" | 4" | 6" | 8" | 10" | 12" | 14" | 16" | |--|----------|----------|----------|----------|---------------|---------------|---------------|----------|----------|----------| | (mm) | (40) | (50-65) | (80) | (100) | (150) | (200) | (250) | (300) | (350) | (400) | | Max. Inlet pressure bar (psi) | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 21 | 21 | 21 | | | (365) | (365) | (365) | (365) | (365) | (365) | (365) | (300) | (300) | (300) | | Pressure setting range bar (psi) | 4 – 12 | 4 – 12 | 4 – 12 | 4 – 12 | 4 – 12 | 4 – 12 | 4 – 12 | 4 – 12 | 4 – 12 | 4 – 12 | | | (60-175) | (60-175) | (60-175) | (60-175) | (60-175) | (60-175) | (60-175) | (60-175) | (60-175) | (60-175) | | Kv | 68 | 80-105 | 190 | 345 | 790 | 1160 | 1355 | 2370 | 2850 | 3254 | | (Cv) | (79) | (92-121) | (219) | (398) | (912) | (1340) | (1652) | (2737) | (3292) | (3758) | | Leq m (ft) | 2 | 4 | 7 | 8 | 8 | 13 | 27 | 55 | 38 | 66 | | Note 1 | (7) | (14) | (24) | (25) | (26) | (43) | (89) | (179) | (125) | (215) | | Max. recommended flow m³/h (gpm) | 24 | 56 | 82 | 145 | 330 | 580 | 910 | 1360 | 1635 | 2170 | | | (106) | (247) | (360) | (640) | (1450) | (2570) | (4000) | (6000) | (7198) | (9555) | | Pilot Valve model | 2-PB | 2-PB | 2-PB | 2-PB | 2-PB /
PBL | 2-UL /
PBL | 2-UL /
PBL | 2-HC | 2-HC | 2-HC | | Recommended Relief (3) valve size, inch (mm) | 3/4" | 3/4" | 1.5" | 2" | 3" | 3" | 4" | 4" | 2 x 4" | 2 x 4" | | | (20) | (20) | (40) | (50) | (80) | (80) | (100) | (100) | (2x100) | (2x100) | Notes: 1) Valve Equivalent Length Value (Steel Pipe), for use in hydraulically calculated system. - 2) Maximum Recommended differential pressure 12 bar (175 psi). - 3) The minimum applicable relief valve size by is 1/2". #### 2.1 Head Loss - 2.1.1 The minimum ΔP across the valve is 0.4 bar (5.8 psi). In cases where the inlet pressure falls below or is equal to the intended outlet pressure, the outlet pressure shall be determined according to the "Valve Outlet Pressure Fall-off Chat" in Appendix A. - 2.1.2 In the case of zero (static) flow through the valve, the maximum increase in the downstream (outlet) pressure above the set pressure of the valve will not exceed 0.5 bar (7.2 psi), it is applicable only when an appropriate relief valve is insulated. ## 3. Approvals The Bermad 42T pressure reducing valve size 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 14 and 16 inch are UL Listed when installed with specific system components as described in this installation manual. Consult Bermad for any component approval recently to appear in any equipment directory. **Note**: A Listed Pressure Relief Valve must be supplied for installation with every pressure reducing valve, see table 1 for Bermad recommended size, the minimum applicable size by is 1/2". ## 4. Installation - 4.1 Allow enough room around the Bermad 42T pressure reducing valve assembly for any adjustments and future maintenance/disassembly work. - 4.2 Before the valve is installed, flush the pipeline to remove any dirt, scale, debris, etc. Failure to do this might result in the valve being rendered inoperable. - 4.3 A UL-listed and FM approved indicating valves should be installed upstream and downstream of the Bermad 42T pressure-reducing valve to allow future maintenance, see fig. 1. - 4.4 Install the valve in the pipeline with the valve flow arrow on the body casing in the proper direction. Use the lifting eye provided on the main valve cover for lifting and lowering the valve. **Note:** A small bypass diameter pressure-reducing valve may be required when large diameter pressure-reducing valve is used, to accommodate low flow conditions such as those created by the flow of a hose connection or a single sprinkler. - 4.5 The Bermad 42T pressure-reducing valve is suitable for horizontal or vertical installation. Ensure that the valve is positioned so that the cover is facing upwards and can be easily removed for future maintenance. - 4.6 After installation, carefully inspect/correct any damaged accessories, piping, tubing, or fittings. - 4.7 A UL-listed and FM approved pressure relief valve shall be installed in accordance with NFPA 13. The pressure relief valve must be installation with every pressure reducing valve. Install the pressure relief valve offline, downstream of the Bermad 42T pressure reducing valve, see fig. 1. **Note**: The pressure relief valve shall be set to open at 0.5 - 1.0 bar (8 - 16 psi) above the 42T valve setting, see table 1 for recommended size. - 4.8 Install a listed pressure gauge on both the upstream & downstream of the Pressure Reducing Control Valve, see fig. 1 for indicated installation. - 4.9 Install the Bermad 42T pressure-reducing valve in accordance with the Standard for Installation of Fire Sprinkler Systems, NFPA 13, or the Standard for Installation of Standpipe and Hose System, NFPA 14, as appropriate. The Bermad 42T pressure-reducing valve is to be tested after installation in accordance with NFPA 13. - 4.10 The Bermad 42T pressure-reducing valve is to be inspected, tested and maintained in accordance with the Standard for the Inspection, Testing and Maintenance of Water-Based Fire Protection Systems, NFPA 25. ## 5. Factory Fitted Options - 5.1 Valve Position Indicator (code I): this option provides the means for Visual Indicating of the Main Valve Position at all times - 5.2 Valve Position Limit Switch (code S or S9): for Remote Indication of the Valve Position. - 5.3 Large Control Filter (code F): provides extra capacity means for filtering of the water supplied to the pilot system, it is recommended for those cases where there is any doubt as to the level of particulate matter in the water. - 5.4 Valve Seat Ring (code T): corrosion Resistance Seat Ring Inserted to the main valve. - 5.5 **Non Return Feature (code 20):** allowing the valve to prevent return flow by adding check valves to the 42T pilot system, see **fig. 2B** for operation principle and **item 7 and 3B item 5** for specific arrangement. - 5.6 Closing Speed Control (code 01): allowing valve reaction speed adjustments, see fig. 2A / 2B item 3. ## Figure 1: Installation Drawing ## **Sprinkler System Pressure Reduction** - Reduces a high, unstable pressure supply to a preset, stable system pressure - Sets the sprinkler pressure to suit the system design - For zonal pressure control #### **Hose System Pressure Reduction** - Reduces a high/unstable pressure supply to suit fire hose pressure - Limits fire hose pressure to 7 bar (100 psi) to meet NFPA 14 regulations for maximum allowable hose pressure supply #### **Two-Stage Pressure Reduction** • High pressure reduction ratio, when pressure differential is more than 12 bar/175 psi # **Redundancy Backup Pressure Reduction** Backup valve inline to a master valve to secure pressure rating at all times. NFPA-14 required that failure of a single device does not allow pressure increase above the pressure rating (for Illustration Only) ## 6. Operation The pressure-regulating pilot senses downstream pressure and modulates the upper control chamber causing the main valve to throttle, thus maintaining constant downstream pressure. When the downstream pressure falls below the pilot setting, the pilot opens, pressure in the upper control chamber decreases, and the main valve modulates open to increase downstream pressure and maintain pilot setting. If the downstream pressure rises above the pilot setting, the pilot valve closes pressure in the upper chamber increases and the main valve throttles close to decrease downstream pressure to the pilot setting. The pressure-reducing pilot valve is equipped with an adjusting screw to preset the desired downstream pressure and factory pre-set restrictor to control the closing speed. ## 6.1 Starting -up When performing this procedure refer to fig. 2A / 2B. - 6.1.1 Gradually open upstream indicating valve. - 6.1.2 Open a hydrant, relief valve, drain valve, or other flow-consumer downstream of the Bermad 42T Pressure-Reducing Valve, creating a system demand. - 6.1.3 Gradually open downstream indicating valve to fully open, allowing flow through the Bermad 42T Pressure-Reducing Valve. - 6.1.4 Wait for downstream pressure stability. - 6.1.5 Slowly close the flow-consumer that was opened in step #1 above to fully close. - 6.1.6 There is no flow; the pressure on the downstream side of the system that is reflected through the pressure gauge. Should be according to the factory pre-set adjusted pressure plus up to an additional 10%. #### 6.2 Readjusting The pilot valve is factory pre-set according to the stated demands of the customer. The pre-set is clearly indicated on the pilot valve tag. If readjustment to either the pressure or valve response is required, follow the following steps. - 6.2.1 When readjusting the outlet pressure, the inlet pressure should be at least 20 psi (1.4 bar) higher than the set outlet pressure. - 6.2.2 The flow rate during adjustment should be as close as is possible to the systems design flow rate. Where this is not possible at least a minimal flow is essential. - 6.2.3 Free the tension between the adjusting screw on the pressure reducing pilot valve (item 4, fig. 2A/2B) and the fastening nut by turning the fastening nut counterclockwise. - 6.2.4 By alternately turning the adjusting screw on the pilot valve a half turn and then reading the downstream pressure, gradually adjust the pressure: - 6.2.5 Counterclockwise to decrease (-) the downstream pressure, or Clockwise to increase (+) the downstream pressure. - 6.2.6 Repeat the Starting-up procedure, steps 6.1-6.5. ## CAUTION: If needle valve is furnished (optional), changes in the adjustment of the needle valve have great impact on the valve performance. The needle valve is factory set at one-half turn open to one and one-half turn open. The maximum number of turns is 3 from fully closed to fully open. More than 3 turns toward open might cause the valve to perform at less than optimal functioning. Perform step 6.5 with this in mind. Figure 2A: Operation Drawing 42T Pressure Reducing Valve Valve Open (flow condition) Figure 2B: Operation Drawing 42T Pressure Reducing valve with Non Return Feature Valve Open (flow condition) # 7. Maintenance and Inspection Test ## 7.1 Normal Conditions **WARNING**: Do not turn off the water supply to make repairs without placing a roving fire patrol in the area covered by the system. The patrol should continue until the system is back in service. Prior to turning off any valves or water supply, notify local site fire officials. In any of the following inspections or testing procedures, if an abnormal condition exists, see Troubleshooting for possible cause and corrective action. The Bermad 42T Pressure-Reducing Valve is to be inspected, tested and maintained in accordance with the Standard for the Inspection, Testing and Maintenance of Water-Based Fire Protection Systems, NFPA 25. - 7.1.1 All main isolating valves should indicate a fully open position. - 7.1.2 Upstream pressure gauge should (item 2, fig. 2) reflect the upstream pressure supplied to the valve. - 7.1.3 Downstream pressure gauge should be according to the system design criteria. ## 7.2 Quarterly Inspection - 7.2.1 The system should be checked for normal condition. - 7.2.2 Check that the main valve, pilot system, accessories, tubing & fittings, are all in good condition, damage free and not leaking. - 7.2.3 The fastening nut of the pilot valve (item 4, fig. 2) adjusting screw should be fastened tightly. ## 7.3 Annual Inspection and Test - 7.3.1 Complete Quarterly Inspection. - 7.3.2 Conduct a flow test in systems nominal flow. The downstream pressure gauge should show the adjusted downstream pressure, and according to the system design criteria, this pressure should be stable. If readjusting is needed it should be according to paragraph 6.2. #### 7.4 Five-Years Inspection and Test - 2.1.3 Complete Weekly and Monthly inspections. - 2.1.4 Place the system out of service (See "Removing the System from Service" above). - 2.1.5 The interior of the Control Valve should be cleaned and inspected. - 2.1.6 The Elastomeric Diaphragm Assembly shall be inspected for wear, it is recommended to be replaced with a new intact Diaphragm Assembly. - 2.1.7 Place the system back in service. (See instructions "Placing the System in Service"). - 2.1.8 The valve and the pilot system must be activated at full flow. - 2.1.9 Take all additional measures as required by NFPA-25 "Standard for the Inspection Testing and Maintenance of Water-Based Fire Protection Systems. #### 7.5 Abnormal Conditions **CAUTION**: any maintenance or cleaning will cause the valve to open fully. Close downstream isolation valve or omit the below activities or test if this may cause damage. | Symptom | Probable Cause | Remedy | | | | | | | | |------------------------------|--|--|--|--|--|--|--|--|--| | Valve fails to | Restrictor (item 3, fig. 2) is blocked | Clean and flash the restriction | | | | | | | | | regulate | Filter (item 2, fig. 2) blocked | Remove filter cap and screen to clean | | | | | | | | | | Air trapped in main valve cover | Loosen cover tube fitting at the highest point, bleed air and re-tighten | | | | | | | | | Valve fails to open | Insufficient inlet pressure | Check/create inlet pressure | | | | | | | | | | No downstream demand | Create demand/flow | | | | | | | | | | Pilot valve is adjusted to low | Readjust according to paragraph 6.2 | | | | | | | | | | Isolation valves closed | Open those valves | | | | | | | | | Valve fails to seal properly | Filter (item 2, fig. 2) blocked | Remove filters cap and screen to clean, see Note below | | | | | | | | | sear property | Debris trapped in main valve | Remove the valve cover and diaphragm, clean the seat and the interiors from debris | | | | | | | | | | Diaphragm in main valve is leaking | Remove the valve cover and Inspect the diaphragm and replace if damaged | | | | | | | | **Note**: In cases where the filter screen frequently becomes blocked, it is recommended replacing the standard filter with Bermad Large Filter Mark "F" (see paragraph 5.3). #### 7.6 Difficulty in Performance Where difficulty in performance is experienced, the manufacturer or his authorized representative should be contacted if any field adjustment is to be made. Figure 3A: Model 42T Pressure Reducing, General Arrangement (GA) Drawing | Item No. | Description | Qty | |----------|-----------------------------------|-----| | 1 | Main Valve BERMAD 400Y Series | 1 | | 2 | Pressure Reducing Pilot Valve (4) | 1 | | 3 | Restriction | 1 | | 4 | Y Strainer | 1 | | | Optional Items | | |---|---------------------------|---| | 1 | Visual Position Indicator | 1 | | S | Limit Switch Assembly | 1 | | С | Tamper Proof Cup | 1 | | Valve Size | 1½"
DN40 | | | | 3"
DN80 | | 4"
DN100 | | 6"
DN150 | | 8"
DN200 | | 10"
DN250 | | 12"
DN300 | | 14"
DN350 | | 16"
DN400 | | |------------|-------------|------|------|------|------------|------|-------------|-------|-------------|-------|-------------|-------|--------------|-------|--------------|-------|--------------|-------|--------------|-------| | Unit | mm | in | Lm | 230 | 9.1 | 230 | 9.1 | 310 | 12.2 | 350 | 13.8 | 480 | 18.9 | 600 | 23.6 | 730 | 28.7 | 850 | 33.5 | 980 | 38.6 | 1100 | 43.3 | | L (2) | 230 | 9.1 | 238 | 9.4 | 326 | 12.8 | 368 | 14.5 | 506 | 19.9 | 626 | 24.6 | 730 | 28.7 | 888 | 35 | 980 | 38.6 | 1100 | 43.3 | | A | 77.5 | 3 | 77.5 | 3 | 100 | 3.94 | 115 | 4.53 | 140 | 5.51 | 172 | 6.77 | 204 | 8 | 242 | 9.53 | 242 | 9.53 | 242 | 9.53 | | В | 155 | 6.1 | 155 | 6.1 | 251 | 9.88 | 266 | 10.47 | 372 | 14.65 | 490 | 19.29 | 490 | 19.29 | 656 | 25.83 | 656 | 25.83 | 656 | 25.83 | | С | 64 | 2.52 | 77 | 3.03 | 106 | 4.17 | 121 | 4.76 | 140 | 5.51 | 172 | 6.77 | 204 | 8.03 | 247 | 9.72 | 272 | 10.71 | 316 | 12.44 | | D | 120 | 4.69 | 120 | 4.69 | 146 | 5.75 | 158 | 6.22 | 228 | 9 | 295 | 11.65 | 296 | 11.65 | 441 | 17.36 | 441 | 17.36 | 415 | 16.3 | # Notes: - (1) Refers to the length dimensions for Raised Face ANSI #150, ISO 16 Flanged, Threaded and Grooved valves - (2) Refers to the length dimensions for Raised Face ANSI #300 and ISO 25 Flanged valves - (3) Exact dimensions for the trim envelope may vary with specific component positioning - (4) Model #2PB/L for 1.5"-10", model #2HC for 12"-16" valve sizes - (5) Provide ample clearance for future maintenance Figure 3B: Model 42T Pressure Reducing with *Non-Return Feature*GA Drawing | Item No. | Description | Qty | |----------|-----------------------------------|-----| | 1 | Main Valve BERMAD 400Y Series | 1 | | 2 | Pressure Reducing Pilot Valve (4) | 1 | | 3 | Restriction | 1 | | 4 | Y Strainer | 1 | | 5 | Check Valve | 2 | | Optional Items | | | | | | | | | |----------------|---------------------------------------|---|--|--|--|--|--|--| | 1 | Valvle Visual Position Indicator | 1 | | | | | | | | S | Enclosed Limit Switch Assembly | 1 | | | | | | | | Υ | Back Flow Y Strainer, for Dirty Water | 1 | | | | | | | | С | Tamper Proof Cup | 1 | | | | | | | | Valve Size | 1½"
DN40 | | THE PERSON NAMED IN CONTRACTOR OF PE | | 3"
DN80 | | 4"
DN100 | | 6"
DN150 | | 8"
DN200 | | 10"
DN250 | | 12"
DN300 | | 14"
DN350 | | 16"
DN400 | | |------------|-------------|------|--|------|------------|------|-------------|-------|-------------|-------|-------------|-------|--------------|-------|--------------|-------|--------------|-------|--------------|-------| | Unit | mm | in | Lm | 230 | 9.1 | 230 | 9.1 | 310 | 12.2 | 350 | 13.8 | 480 | 18.9 | 600 | 23.6 | 730 | 28.7 | 850 | 33.5 | 980 | 38.6 | 1100 | 43.3 | | L (2) | 230 | 9.1 | 238 | 9.4 | 326 | 12.8 | 368 | 14.5 | 506 | 19.9 | 626 | 24.6 | 730 | 28.7 | 888 | 35 | 980 | 38.6 | 1100 | 43.3 | | A | 77.5 | 3 | 77.5 | 3 | 100 | 3.94 | 115 | 4.53 | 140 | 5.51 | 172 | 6.77 | 204 | 8 | 242 | 9.53 | 242 | 9.53 | 242 | 9.53 | | В | 155 | 6.1 | 155 | 6.1 | 251 | 9.88 | 266 | 10.47 | 372 | 14.65 | 490 | 19.29 | 490 | 19.29 | 656 | 25.83 | 656 | 25.83 | 656 | 25.83 | | С | 64 | 2.52 | 77 | 3.03 | 106 | 4.17 | 121 | 4.76 | 140 | 5.51 | 172 | 6.77 | 204 | 8.03 | 247 | 9.72 | 272 | 10.71 | 316 | 12.44 | | D | 120 | 4.69 | 120 | 4.69 | 146 | 5.75 | 158 | 6.22 | 228 | 9 | 295 | 11.65 | 296 | 11.65 | 441 | 17.36 | 441 | 17.36 | 415 | 16.3 | #### Notes - (1) Refers to the length dimensions for Raised Face ANSI #150, ISO 16 Flanged, Threaded and Grooved valves - (2) Refers to the length dimensions for Raised Face ANSI #300 and ISO 25 Flanged valves - (3) Exact dimensions for the trim envelope may vary with specific component positioning - (4) Model #2PB/L for 1.5"-10", model #2HC for 12"-16" valve sizes - (5) Provide ample clearance for future maintenance ## **APPENDIX A: Fall-Off Charts** Bermad 42T Pressure Reducing Valve Outlet Pressure Verses Flow, Should inlet pressure falls below the valve outlet set pressure: ## Bermad 42T, Size 1.5, 2 and 2.5" ## Bermad 42T, Size 4" # Bermad 42T. Size 14"